

Programming Environment
Setup

Software Installation, Hardware Setup and

Communication for VC Z Series

Revision 1.3 - 26 Nov 2018

Document name: Getting_Started_VC_Z_Series.pdf
 Vision Components GmbH Ettlingen, Germany

Embedded Imaging Experts since 1996

Foreword and Disclaimer
This documentation has been prepared with most possible care. However Vision Components GmbH
does not take any liability for possible errors. In the interest of progress, Vision Components GmbH
reserves the right to perform technical changes without further notice.
Please notify support@vision-components.com if you become aware of any errors in this manual or
if a certain topic requires more detailed documentation.
This manual is intended for information of Vision Component’s customers only. Any publication of this
document or parts thereof requires written permission by Vision Components GmbH.

Trademarks
Linux, the Tux logo, Vivado, Xilinx and Zynq, Windows XP, Total Commander, Tera Term, Motorola
are registered Trademarks. All trademarks are the property of their respective owners.

The Light bulb highlights hints and ideas that may be helpful for a development.

This warning sign alerts of possible pitfalls to avoid. Please pay careful attention to sections
marked with this sign.

Author: VC Support, mailto:support@vision-comp.com

mailto:support@vision-components.com
mailto:support@vision-comp.com

Table of Contents

1 Manual Overview 5
1.1 General information 5
1.2 Video tutorial 5

2 Camera Access 6
2.1 Ping Test 6
2.2 File Upload Test 7
2.3 Console Access Test 8

3 Camera image transfer 9

4 Pieces of the Puzzle 12
4.1 Always involved Components 12
4.2 Optional but Recommended Components 12

5 Step-By-Step Guide for a Working Environment 14
5.1 VC Linux Setup on the target system (VC Z camera) 14
5.2 VC Linux Setup on the development platform (PC) 16

5.2.1 Download 16
5.2.2 Installation 16
5.2.3 Configuration 16
5.2.4 Files and Directories 17

5.3 Linaro Compiler Setup 17

5.3.1 Download 17
5.3.2 Installation 17
5.3.3 Configuration 18
5.3.4 Files and Directories 18

5.4 Eclipse IDE Setup 19

5.4.1 Download 19
5.4.2 Installation 20
5.4.3 Configuration 20
5.4.4 Files and Directories 22

5.5 Hello World! Program 24

5.5.1 Set Up a New C Project 24
5.5.2 Using the Internal Builder 25
5.5.3 Adding a New main.c 25
5.5.4 Building the Program 26
5.5.5 Linking VC Libraries & Optimization 27
5.5.6 Program Execution and Debugging 29

5.6 Next steps: programming the VC Z cameras 31

5.6.1 Online library reference 31
5.6.2 Example programs 32

Appendix A: Compiling from Shell 34

Appendix B: Communication Error Resolving 36

Appendix C: Changing the IP address and DHCP 37

Appendix D: Starting programs automatically 38

Appendix E: Recovering a camera 39

This guide is solely made for the VC Smart Cameras containing a Xilinx Zynq processor!
All users are strongly encouraged to read the complete document.

1 Manual Overview
1.1 General information

Key concepts to program a VC camera system will be presented in this manual.
A full working environment is built up by following the step-by-step guide in a following section.
Aim is to get a running Hello World! program.

The appendix contains knowledge about compiling from shell and a section to enforce camera
communication.

Further information about image acquisition and processing will be provided at the document named
Programming Tutorial which completes the introduction to the programming of VC smart cameras.

This guide was written primarily for Windows users. However it is possible to set up the development
environment under a Linux system. The differences in the installation process will be highlighted in

orange and indicated by a Linux logo for an installation under Ubuntu Linux.

1.2 Video tutorial

Most of the content of this document can also be visualized as a video tutorial in two parts, which can
be found on our youtube channel:

Part 1: communication with the camera and image transfer
https://www.youtube.com/watch?v=7RVneQ4A_TI

Part 2: Setup of the development environment
https://www.youtube.com/watch?v=xQVeF1TQmT4

https://www.youtube.com/user/VisionComponents
https://www.youtube.com/watch?v=7RVneQ4A_TI
https://www.youtube.com/watch?v=xQVeF1TQmT4

2 Camera Access

Only a minimum of information to use the eclipse IDE is provided here.
Deeper knowledge like IP address changing, autostarting applications etc. can be found in the
appendix at the end of this document.

An Ethernet TCP/IP connection is used to communicate between the camera and the PC.
Files will be transferred over SCP or SFTP protocol via standard port 22.
Console access will be done via the SSH protocol also via standard port 22.

The initial and fallback network settings are as follows:

IP Address 192.168.003.015
Subnet mask 255.255.255.000

Due to these subnet mask settings, your PC must have at least one different IP address in the range
of 192.168.3.[0–254]. Contact your system administrator for assistance. The initial login settings are
as follows:

User Name root
Password root

NOTE: to ensure full functionality use as User Name / Password: root / root.

The following program can be used to transfer files:

- WinSCP, free software (http://winscp.net/eng/download.php), from the selectable
interfaces, we use the Commander Interface.

The following program can be used to establish a terminal connection:

- TeraTerm, free software (http://en.sourceforge.jp/projects/ttssh2/releases/).

If not already set up, install one program for each task.
We encourage you to choose WinSCP and TeraTerm at least for the first time, that our support can
assist you if something is not working out-of-the-box!

The camera IP address is not limited to the IP range 192.168.3.XXX. Any IP address can be used as
long as the camera and the PC work in the same subnet.

2.1 Ping Test

To test the availability of the camera you can ping for it:

a. Connect the power and network cables to the camera, for clarity consult the hardware manual.
b. Start a Shell on your machine by

clicking the Start button → All Programs → Accessories → Run.
c. Type the command ping 192.168.3.15 and press enter.

On success it continuously reports Reply from 192.168.3.15: bytes=32 time=…, if you get the
message Request timed out or Destination host unreachable check your network settings and if the
camera is turned on and if you waited for at least failsafe 30 seconds for the camera to finish booting.
Your firewall settings may also lead to unsuccessful connections. Ask your system administrator for
assistance.

http://winscp.net/eng/download.php

2.2 File Upload Test

Test file uploading by connecting to the camera IP using the SSH standard port 22. A writeable
directory is, for example, /tmp/. See the following image how it is done at WinSCP. You can upload
any small file to test, here we used a simple text file named test_file_transfer.txt.

On Linux / Ubuntu use the “scp” command in the terminal.

2.3 Console Access Test
To gain shell access, connect to the camera via the SSH standard port 22. The following image shows
how to set up a SSH connection via Tera Term. If you never used Tera Term before, a window may
appear saying that no entry for the server "192.168.3.15" in your list of known hosts. Just confirm by
pressing the continue button.

Linux / Ubuntu: run ssh root@192.168.3.15 in the terminal.

3 Camera image transfer

An image viewing application is provided by Vision Components on every VC Z camera. It consists of
two shell commands on the camera:

- vcimgnetsrv: this program is an image server. It runs in the background and transfers the
content of a specific memory area over Ethernet to a client software on a PC

- vctp: this program does a continuous image capture and copies the captured image in the
memory area for vcimgnetsrv to transfer

On the PC side the client software vcimgnetclient.py (Python script) receives the images and
displays them. Download-Link:
http://files.vision-components.com/ImageTransfer/vcimgnetclient.zip

Follow these steps (on Windows):

1. Install Python and PyGTK (in this order). The Windows installers can be downloaded here:

http://files.vision-components.com/ImageTransfer/python-2.7.11.msi
http://files.vision-components.com/ImageTransfer/pygtk-all-in-one-2.24.2.win32-py2.7.msi

2. On the camera, run the program vcimgnetsrv in the background with the command

“vcimgnetsrv &”.

3. Start vcimgnetclient (double-click) and enter the correct parameters (IP address of your camera

under Server IP, resolution under dx and dy). Check the box “Receive Continuously” to get

continuous images.

http://files.vision-components.com/ImageTransfer/vcimgnetclient.zip
http://files.vision-components.com/ImageTransfer/python-2.7.11.msi
http://files.vision-components.com/ImageTransfer/pygtk-all-in-one-2.24.2.win32-py2.7.msi

4. Click on “Receive Image” to start the image transfer. At this point you should see a moving bar in

the middle of the image (meaning the client is connected to the server on the camera but no

images are being captured yet):

IP address of the camera
(Server Port is 2002)

Origin of ROI to be transferred

Subsampling for transfer

Display: „Grey“ for black and white
cameras, “RGB” for color cameras

Size of ROI to be transferred

5. To start capturing start the program vctp from the camera shell with “vctp”. The live image should

then be transferred:

You can abort vctp with “Ctrl + C”. Some options are available like shutter time or gain (execute “vctp
–help” to see the options):

For example set a shutter time of 15 ms with “vctp –s 15000”.

The source code of the program vctp is available in the VC Demo programs package. The server
vcimgnetsrv can be used from any other user program by using the vcimgnet programming interface
and is useful for visual debugging. More information can be found in the online documentation:
vcimgnetsrv documentation.

https://www.vision-components.com/fileadmin/external/documentation/software/lib/libvclinux/latest/html/a00008.html

4 Pieces of the Puzzle

There are required and optional software components to run a program at a VC Smart Camera with
Xilinx Zynq processor.

4.1 Always involved Components

VC Linux

VC Linux is our bundle of a Linux kernel specifically tuned for our hardware setup and the root file
system for the cameras including software packages.

libvclinux

libvclinux provides functions for image acquisition.

Linaro C Cross Compiler

Our tests showed that the Linaro compiler generates the fastest code at our platform. Hence we
decided to declare it as our standard compiler and give to you instructions how to install and use it.
Independent of your compiling operating system it will compile your program for our ARM Linux
system. This behavior is called cross compiling if the compiling system is not of the same type as the
executing platform.

4.2 Optional but Recommended Components

Eclipse IDE

The Eclipse IDE is a comfortable graphical development platform for programming Vision Components
Smart Cameras. It is programmed in java. The IDE uses the GNU C cross compiler and debugger for
ARM based chipsets which can be used to write and run programs on our camera system.
For most programs you are not bound to use the IDE, but it is highly recommended, since all support
requests imply the application of the eclipse IDE and the Linaro compiler. No support is guaranteed for
deviant solutions!

For an up to date list of approved Eclipse IDE versions, please refer to the Support News section in
the Support + Download area of the VC website.

VC Image Processing Libraries

The VC Image Processing Libraries consist of an extensive range of image processing functions.
They are utilized in various Industrial applications for more than 15 years and undergo continuous
development.

A feature excerpt:

- Histogram Calculations, Projections, Pyramid Filters
- Kernel Filters, Sobel, Moving Averages, Correlations
- Run Length Image Processing Functions, Segmentation and Object Labelling
- Feature Calculations, for example, Area, Bounding Boxes, Fenet, Moments
- Contour Following

- Drawing Functions

To ensure compatibility and to ease the installation process the VCLIB setup is combined with the VC  
Linux setup in one installation.

5 Step-By-Step Guide for a Working Environment

Later, after installation and configuration of the Eclipse IDE, a demo project will be set up, the camera
connection will be made, the program will be compiled, transferred and started.

Without using the Eclipse IDE you can also compile and link: Follow the same instructions to have the
Compiler installed, information how to compile from the shell follow in an appendix.

We are sure that you gain valuable information on how the development components are
interconnected by starting with bare programs and let you reenact setting the relevant parameters.
Along the way we provide knowledge to you which will be good to know for your later projects.

5.1 VC Linux Setup on the target system (VC Z camera)

For compiling Vision Components uses libraries under the form of shared objects. In contrary to static
libraries, these are dynamically linked at program launch. This is why they have to be present on the
development platform (see next chapter) and also on the target system (in our case the VC Z camera).

The VC libraries are provided under the form of Debian packages, which are the standard way of
installing software on Debian. For more information check
https://www.debian.org/doc/manuals/debian-faq/ch-pkg_basics.en.html.

The libraries (libvclinux and libvclib) are already present on the camera at delivery. No action is
needed here if your camera is new!

The camera (VCLinux OS and libraries) can be updated automatically using apt-get and VC’s own
Debian repository. To update the camera, execute the script up.sh which is available on all cameras
in the folder /root/ or can be downloaded here:
http://files.vision-components.com/VCLinux/up.zip

The installed files are to be found under the /usr folder:

usr
 lib Shared objects files

include Include files
share
 doc
 libvclib-doc Libvclib documentation
 libvclinux-doc Libvclinux documentation

https://www.debian.org/doc/manuals/debian-faq/ch-pkg_basics.en.html
http://files.vision-components.com/VCLinux/up.zip

You can check the versions of the installed packages by running the command “vcver” or “dpkg –l |
grep vc”:

The VCLinux system also contains the following preinstalled tools:

vcgpio Example GPIO Manipulation for VC Cameras
vcimgnetsrv Example Image Transfer Server for VC Cameras
vcio I/O Control for VC Cameras
vcperformance Performance Measurement for VC Cameras
vctp Example Image Acquisition and Transfer for VC Cameras
vcver Version Information for VC Cameras

For offline camera updates, please contact our support at support@vision-components.com.

mailto:support@vision-components.com

5.2 VC Linux Setup on the development platform (PC)
This step will copy the VC libraries for hardware access and documentation to a standard folder.

Linux / Ubuntu: a package will be available for Ubuntu. For now copy the files manually to
/home/user/vc for example.

5.2.1 Download

5.2.1.1 From the camera

To ensure that you have identical libraries on the camera and on the development platform, it is
recommended to download the libraries directly from the camera using the script vc-generate-cross-
compile-package.sh, which produces an archive (.zip) file saved under /tmp. The script is present on
all cameras or can be downloaded here:
http://files.vision-components.com/VCLinux/vc-generate-cross-compile-package.zip

Execute the script with:

bash vc-generate-cross-compile-package.sh

5.2.2 Installation

NOTE: the setup file is not available yet! The content of the zip file has to be copied manually to
C:\vc\vclinux!

The installation process needs you to have administrator rights.
It goes without saying that you should have your system backed up, especially before updating.

a. Extract the downloaded file after verifying its integrity.
b. Execute the binary named Setup_<target>_<libvclinux ver.>_<libvclib ver.>.exe.
c. To be able to proceed you need to read and accept the licence agreements.
d. As Destination Directory it is recommended to choose the standard path C:\vc,

so that you and our support have the same directory structure.

5.2.3 Configuration

Since the VC Linux software package only consists of passive parts like libraries, headers,
documentation, etc. the main configuration is done at the Eclipse IDE.

http://files.vision-components.com/VCLinux/vc-generate-cross-compile-package.zip

5.2.4 Files and Directories

The following components are at the installation directory (for example C:\vc):

vclinux
 include Header Files

lib Library Files
doc
 libvclinux-doc Camera Hardware Related Documentation
 libvclib-doc Documentation of Functions for Image Processing and Acquisition

5.3 Linaro Compiler Setup

The compiler will be used to build your programs not only from the eclipse environment.

5.3.1 Download

a. Download the Windows Installer of the toolchain here:
http://files.vision-components.com/VCLinux/gcc-linaro-arm-linux-gnueabihf-
4.9_win32.zip

5.3.2 Installation

The installation process needs you to have administrator rights.
It goes without saying that you should have your system backed up, especially before updating.

a. Execute the binary after verifying its integrity.
b. To be able to proceed you need to read and accept their licence agreements.
c. As Destination Directory it is recommended to choose the standard path

C:\Program Files (x86)\Linaro\gcc-linaro-arm-linux-gnueabihf-4.9-<Release Version Number>
so that you and our support have the same directory structure.

d. Note the GCC Environment Settings Batch File Location at
C:\Program Files (x86)\Linaro\gcc-linaro-arm-linux-gnueabihf-4.9-<Release Version
Number>\bin\gccvar.bat.

e. Finish the setup dialog.

FOR LINUX / UBUNTU USERS

Download and install the current gcc package for armhf platform with:
apt-get install gcc-arm-linux-gnueabihf

Download and install the current g++ package for armhf platform with:
apt-get install g++-arm-linux-gnueabihf

Then proceed directly to chapter 5.3.3.

http://files.vision-components.com/VCLinux/gcc-linaro-arm-linux-gnueabihf-4.9_win32.zip
http://files.vision-components.com/VCLinux/gcc-linaro-arm-linux-gnueabihf-4.9_win32.zip

5.3.3 Configuration

The compiler, header, and library location is used later at the Eclipse IDE configuration phase.

5.3.4 Files and Directories

The following important components are at the installation directory:

bin Compiler/Linker/Debugger Executables
arm-linux-gnueabihf …hf: hard float ABI version
 …

libc
 …
 lib\arm-linux-gnueabihf ‘Shared’ Libraries
 usr
 include Header Files
 lib\arm-linux-gnueabihf ‘Static’ Libraries

The suffix hf indicates the hard float build variant of the Application Binary Interface (ABI):
You cannot mix up object files or (shared or static) libraries built with different kinds of ABI.
The compiler option –mfloat=hard will set the type of choice later.
If a hard float application is linked statically, it should run at a soft float environment.

5.4 Eclipse IDE Setup

You can also build your program from shell (see Appendix A), but eclipse makes
at least debugging a lot more comfortable.

Eclipse needs a Java Runtime Environment installed. If it is not already present at your system
get it from the website http://java.com. We suppose this to be done before proceeding.

5.4.1 Download

a. Visit the Eclipse website https://www.eclipse.org/downloads/eclipse-packages/.
b. The appropriate Eclipse package is named Eclipse IDE for C/C++ Developers.
c. Download the package fitting the bit version of your system (32- or 64-bit).

The Java Runtime Environment version and the Eclipse version should be both either 32-bit or 64-bit!
A 32-bit Eclipse with a 64-bit Java for example will not work!

FOR LINUX / UBUNTU USERS

Download and install the Eclipse IDE package with:
apt-get install eclipse-cdt-launch-remote

If the Run menu does not contain the debug commands, go to menu Window -> Customize
perspective…
Under the tab Command Groups Availability, check the following items:

- Breakpoints
- C/C++ Debug
- Debug
- Launch

Download and install the correct GDB package:
apt-get install gdb-multiarch

Then proceed directly to chapter 4.4.3.

http://java.com/
https://www.eclipse.org/downloads/eclipse-packages/

5.4.2 Installation

The installation process needs you to have administrator rights if you install it to the suggested folder.
It goes without saying that you should have your system backed up, especially before updating.

a. Verify the integrity of the file.
b. To be able to proceed you need to read and accept the licence agreements for the package.
c. Extract the files of the archive. As Destination Directory it is recommended to choose the

standard path C:\Program Files\ or C:\Program Files (x86)\ depending on the bit version
downloaded which should lay the files to a directory named eclipse, so that you and our
support have the same directory structure. It may be necessary to extract the files to a
temporary folder first and then move the eclipse folder to the standard path.

d. You may want to add a link to the executable C:\Program Files\eclipse\eclipse.exe or
C:\Program Files (x86)\eclipse\eclipse.exe to your start menu.

5.4.3 Configuration

At the first start of eclipse you have to select a workspace directory where eclipse will store your
projects, we suggest the path C:\vc\eclipse-workspace\ (Linux / Ubuntu: /home/user/workspace).
After application a Welcome tab is displayed. It can be closed by just clicking the X symbol of the tab.

Important is the correct configuration of your Windows Internet Explorer proxy server settings!
Ensure that any proxy server is bypassed for connections to the camera IP. You can get to the
configuration panel by calling your Windows Control Panel, followed by Network and Internet and
Internet Options. Then choose the Tab named Connections, click on the LAN Settings button and add
the Camera IP at the Do not use proxy server for adresses beginning with field after clicking the
Advanced button.
Also ensure that your firewall does not block any traffic to the camera IP, and your PC is in the same
subnet as the camera, which means, that it has an IP address of the form 192.168.3.XXX.

5.4.3.1 Adding a Camera as a Remote System to Eclipse

The following images show how to add a camera device as a remote system.

If the error message Failed to connect sshd on "192.168.3.15:22" is displayed, check your proxy
server and/or your firewall settings (also the Network settings in Eclipse)!

NOTE: please use as User Name /
Password: root / root.

5.4.3.2 Debugger Template Setup: Communication between the SDK and a VC Camera

The following Image describes the main setup of an environment used for debugging.
It is meant to be duplicated by you for each of your projects. The applied settings provide the target IP
and information how to transfer data or access the console as well as the debugger used by the client
machine.
The path of the GDB Debugger is given by the location of the Linaro GCC and its version number, for
example: C:\Program Files (x86)\Linaro\gcc-linaro-arm-linux-gnueabihf-4.9-2014.09\bin\arm-linux-
gnueabihf-gdb.exe (Linux / Ubuntu: /usr/bin).

On Linux / Ubuntu the correct path and command is:
/usr/bin/gdb-multiarch --eval-command=”set architecture arm”

Later at the Hello World example the project which builds the executable, as well as the executable
path and filename on the target camera system, will be added to a duplicate of this template.

5.4.4 Files and Directories

The folder of the eclipse program contains nothing really of interest.

Configuration changes of eclipse and new plugins will be kept in a subdirectory named ‘.eclipse’ at
the user’s home path C:\Users\<User Name>\ if the actual eclipse installation directory is not writeable
(which is the case if you have installed it to the standard path C:\Program Files\eclipse).

The selected workspace folder contains a directory named ‘.metadata’. All workspace settings you
configure will be kept in there (for example also the just generated Debug Configuration). Do not
modify anything in the folder directly. You should also not copy the folder directly since this would not
work correctly. If you want to, e.g. for sharing the settings with a colleague, then use the
File→Export→General→Preferences dialogue at the Eclipse IDE.

Each new C project like the following Hello World! program add a folder to the workspace directory.
The project directory includes the files ‘.cproject’ and ‘.project’. The ‘.cproject’ file contains C project
settings like the compiler parameter or library paths.

5.5 Hello World! Program
5.5.1 Set Up a New C Project

The next image displays the steps to be done for generating a new C project.
Verify your project type is Executable and your toolchain is Cross GCC.
The cross compiler path is the path to our previously installed Linaro GCC. Control the path twice,
since a false path will lead to an arm-linux-gnueabihf-gcc not found in PATH build error.
If the IDE asks you to switch to the so-called C/C++ Perspective , accept it.

Linux / Ubuntu: path is /usr/bin

5.5.2 Using the Internal Builder

Ensure the internal builder is being used. This step is only for reasons to have a guaranteed working
environment. If you know and use make, you may ignore this step.

5.5.3 Adding a New main.c

Right click on the helloWorld Project Folder to open the menu. Don’t forget to save the new file!

5.5.4 Building the Program

Remember to save the file after changing it!

5.5.5 Linking VC Libraries & Optimization

The following image guides you through the settings necessary to use the VC Libraries and provide
information of the chipset used to enable code optimization. The paths visible at this image may be
replaced depending on your VC library version.
This step is necessary to be done after setting up a new C project since there is no polite way to store
the information. As workaround you could store a project like the hello world program as blueprint and
duplicate it instead of re-setting it up. However we recommend the manual way to avoid problems.

It is important to link the math library (“m”) and the runtime library (“rt”) in addition to the VC libraries!

Paths may vary regarding your installation and version setup.

For debugging use “None (–O0)”

C:\vc\vclinux\lib

C:\Program Files (x86)\Linaro\gcc-linaro-arm-linux-gnueabihf-4.9-2014.09\bin

5.5.6 Program Execution and Debugging

We now add project specific information to a duplicate the previously added Debug Communication
Setup Template and start a debug session.

After clicking the Debug button the IDE asks to switch to the so-called Debug Perspective – Accept it.

You then will see the following window. The program has been modified
slightly to see the debug capability. First double-click at the left blue
coloured border at the height of the printf() line. This sets a breakpoint. The
Play/Pause button will continue execution until the next breakpoint has been
reached. At its way down, the variable i changes its value by assignment
which can be seen by the yellow coloured background at the variables tab.

Proceed taking a single step without stepping through function internals for debugging (if you’d have
wished so, the left button beneath would have done the job). The printf() generates a line on the
console as can be seen at its tab. If there is nothing happening at the console, remember, that it is line
buffered. So if you forgot to add a \n at the end of the printf-string, the content won’t be written to
console out! Since nothing more is at this function, quit by clicking the Stop Debugging button. To
switch back to the Programming Perspective press the C/C++ Button at the right.

More information about debugging in eclipse can be found at the eclipse documentation.

There are behaviours you should know based on the nature of the underlying debug mechanism: As a
first step eclipse copies the executable to the folder you configured at the debug configuration panel
under Remote Absolute File Path for C/C++ Application. If
a previous debugging process is not cancelled correctly,
this executable is still being running and thus non-
overwriteable, which results in a I/O error at transfer time.
The solution is the same as at the error message which
tells that the gdbserver could not be started: After eclipse
normally copied the executable to the system it starts the
program gdbserver at the camera which itself runs your
program. At your eclipse machine, eclipse starts the
program gdb being the client component which connects
to the gdbserver at your camera via ethernet. Since
another instance is still running in the error case, you have
to end the old process first to be able to proceed with a
new debugging session. Therefore open a SSH Console
using TeraTerm and type the command ps to get a listing
of all currently running processes. There will be a line with

gdbserver followed by your binary location. The line starts with a PID number, the process ID. Each
running program at the camera has such a unique processes ID. You can use the PID of your process
to terminate it by using the following command: kill -15 PID. It sends a request to the gdbserver to quit.
In case this does not succeed, you can tell the linux kernel to terminate the process by sending the
command kill -9 PID.

5.6 Next steps: programming the VC Z cameras

With this working environment, you can now start programming your VC Z camera. For help you can
refer to the library documentation which can be found in your installation directory, and also online.

5.6.1 Online library reference

Link for the VCLinux online documentation:
http://www.vision-
components.com/fileadmin/external/documentation/software/lib/libvclinux/latest/html/index.ht
ml

The VCLinux online documentation contains some short programming examples showing the
possibilities of image capture, I/O management and image transfer using vcimgnet.

Link for the VCLib online documentation:
http://www.vision-components.com/fileadmin/external/documentation/software/lib/libvc-
base/latest/html/index.html

The VCLib online documentation is a reference for VC’s image processing library.

http://www.vision-components.com/fileadmin/external/documentation/software/lib/libvclinux/latest/html/index.html
http://www.vision-components.com/fileadmin/external/documentation/software/lib/libvclinux/latest/html/index.html
http://www.vision-components.com/fileadmin/external/documentation/software/lib/libvclinux/latest/html/index.html
http://www.vision-components.com/fileadmin/external/documentation/software/lib/libvc-base/latest/html/index.html
http://www.vision-components.com/fileadmin/external/documentation/software/lib/libvc-base/latest/html/index.html

5.6.2 Example programs

Some example programs / projects are available for download:
http://files.vision-components.com/Support/Eclipse_Example_Projects_VC_Z.zip

The Projects can be imported directly into Eclipse using the import function in the menu File 
Import…

Under “General” choose “Existing Projects into Workspace”:

http://files.vision-components.com/Support/Eclipse_Example_Projects_VC_Z.zip

The projects then appear in the Project Explorer:

1. Browse to the folder
where you extracted
the demo projects

2. Select
the projects
you want to

import

3. Select this option to
copy the projects to
you own workspace

4. Click on Finish to
import the projects

Appendix A: Compiling from Shell

To compile and link your source code the following command can be executed
(you may want to use a batch or makefile):

“C:\Program Files (x86)\Linaro\gcc-linaro-arm-linux-gnueabihf-4.9-2014.09\

bin\arm-linux-gnueabihf-gcc-4.9.2”
Compiler Call

-ggdb Optional for Debug
-O3 Optimization
-mcpu=cortex-a9 -mfpu=neon -ftree-vectorize -mfloat-abi=hard Target System
-I”C:\Program Files (x86)\Linaro\gcc-linaro-arm-linux-gnueabihf-4.9-2014.09\

arm-linux-gnueabihf\libc\usr\include”
GCC Header Path

-IC:\vc\vclinux\include VC Header Path
-I.\ Your Header Paths
-oFILEOut Output Filename
FILEIn1.c FILEIn2.c Input Files
--static Link Libs Statically
-L”C:\Program Files (x86)\Linaro\gcc-linaro-arm-linux-gnueabihf-4.9-2014.09\

arm-linux-gnueabihf\libc\usr\lib\arm-linux-gnueabihf”
GCC Library Path

-LC:\vc\vclinux\lib VC Library Path
-L.\ Your Library Paths
-lvclinux Link VC Library
-lvclib Link VC Library
-lvcflib
-lvcimgnet

Link VC Library
Link VC Library

-lm Link GCC math
-lrt Link GCC Runtime

To invoke a debug session by hand, copy the binary to your camera, open a console at the camera,
e.g. via TeraTerm and start the gdb server application which, for example, listens on port 1234 and
allows any IP to connect:

gdbserver :1234 ./FILEOut GDB Server Call

Now you can connect to the server from your local machine by calling

“C:\Program Files (x86)\Linaro\gcc-linaro-arm-linux-gnueabihf-4.9-2014.09\

bin\arm-linux-gnueabihf-gdb”
GDB Client Call

and run the following commands at the (gdb) prompt:

file ./FILEOut Load Symbols
target remote 192.168.3.15:1234 Connect to Server

You may then

• list the source code including line numbers using the l command,
• insert breakpoints using the b command followed by the line number,
• single step through the program by using the s command,
• continue execution until at breakpoint using the c command,
• print a value of a parameter by using the p command, e.g. p i

• set new values to a parameter by assigning it to them, e.g. i=22,
• backtrace the stack by the command bt,
• add a parameter to be displayed continuously by using the watch command, or
• leave the program by using the command quit.

Refer to the GDB documentation for other tasks.

Appendix B: Communication Error Resolving

If you get the error message above, it is probably due to a wrong path entered for “Remote absolute
file path” in the Debug Configuration window.

Appendix C: Changing the IP address and DHCP

Fixed IP address

To change the IP address of a Z series camera edit the file vcsetip.scr (under /root) and modify the
parameter ipaddr:

ipaddr 192.168.3.15
netmask 255.255.255.0
gatewayip 192.168.3.254
serverip 192.168.3.35
dnsip 192.168.3.254
dnsip2 192.168.3.254
addip setenv bootargs ${bootargs}
"ip=${ipaddr}:${serverip}:${gatewayip}:${netmask}:${hostname}:${ethdev}:off
:${dnsip}:${dnsip2} "

Other network parameters like subnet mask, gateway and DNS addresses can also be modified here.
Do not modify the last line of the script.

Then run the script vcsetip.sh to apply the changes. Reboot the camera.

Dynamically allocated IP address

To activate the DHCP client, run the script vcsetdhcp.sh. Reboot the camera.

Appendix D: Starting programs automatically

To start a program automatically, please proceed like this:

- create a script file user_init.sh in the folder /etc/vcinit/

- write in it your program calls

- the script user_init.sh has to be executable. This can be done with the command chmod +x
user_init.sh

- the script /etc/vcinit/vcinit.sh calls the script user_init.sh at startup if it is available.

Pay attention to the path for the programs to be executed.

Appendix E: Recovering a camera

To recover a camera which is not responding on the network, please use the following recovery tool:

http://files.vision-components.com/VCLinux/vc_z_fix_ip.zip

Instructions are included in the zip file.

http://files.vision-components.com/VCLinux/vc_z_fix_ip.zip

	1 Manual Overview
	1.1 General information
	1.2 Video tutorial

	2 Camera Access
	2.1 Ping Test
	2.2 File Upload Test
	2.3 Console Access Test

	3 Camera image transfer
	4 Pieces of the Puzzle
	4.1 Always involved Components
	4.2 Optional but Recommended Components

	5 Step-By-Step Guide for a Working Environment
	5.1 VC Linux Setup on the target system (VC Z camera)
	5.2 VC Linux Setup on the development platform (PC)
	5.2.1 Download
	5.2.1.1 From the camera

	5.2.2 Installation
	5.2.3 Configuration
	5.2.4 Files and Directories

	5.3 Linaro Compiler Setup
	5.3.1 Download
	5.3.2 Installation
	5.3.3 Configuration
	5.3.4 Files and Directories

	5.4 Eclipse IDE Setup
	5.4.1 Download
	5.4.2 Installation
	5.4.3 Configuration
	5.4.3.1 Adding a Camera as a Remote System to Eclipse
	5.4.3.2 Debugger Template Setup: Communication between the SDK and a VC Camera

	5.4.4 Files and Directories

	5.5 Hello World! Program
	5.5.1 Set Up a New C Project
	5.5.2 Using the Internal Builder
	5.5.3 Adding a New main.c
	5.5.4 Building the Program
	5.5.5 Linking VC Libraries & Optimization
	5.5.6 Program Execution and Debugging

	5.6 Next steps: programming the VC Z cameras
	5.6.1 Online library reference
	5.6.2 Example programs

	Appendix A: Compiling from Shell
	Appendix B: Communication Error Resolving
	Appendix C: Changing the IP address and DHCP
	Appendix D: Starting programs automatically
	Appendix E: Recovering a camera

